Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI

نویسندگان

  • Xianchao Xiu
  • Lingchen Kong
چکیده

It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k - t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components

Purpose: To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. Theory and Methods: The L+S model is natural to represent dynamic MRI data. Incoherence between k-t space (acquisition) and the singular vectors of L and the sparse domain of S is req...

متن کامل

Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components.

PURPOSE To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. THEORY AND METHODS The L+S model is natural to represent dynamic MRI data. Incoherence between k-t space (acquisition) and the singular vectors of L and the sparse domain of S is req...

متن کامل

Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction

The reconstruction of dynamic magnetic resonance imaging (dMRI) from partially sampled k-space data has to deal with a trade-off between the spatial resolution and temporal resolution. In this paper, a low-rank and sparse decomposition model is introduced to resolve this issue, which is formulated as an inverse problem regularized by robust principal component analysis (RPCA). The inverse probl...

متن کامل

Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform

Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various ma...

متن کامل

Low-rank and Sparse Matrix Decomposition with a-priori Knowledge for Dynamic 3D MRI Reconstruction

It has been recently shown that incorporating priori knowledge significantly improves the performance of basic compressive sensing based approaches. We have managed to successfully exploit this idea for recovering a matrix as a summation of a Low-rank and a Sparse component from compressive measurements. When applied to the problem of construction of 4D Cardiac MR image sequences in real-time f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015